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ABSTRACT

Phase-field techniques provide an alternative approach to fracture problems which mitigate some of the com-
putational expense associated with tracking the crack interface and the coalescence of individual fractures. The
technique is extended to apply to hydraulically driven fracture such as would occur during fracking or CO2 seques-
tration. Additionally, the technique is applied to a stainless steel specimen used in the Sandia Fracture Challenge.
It was found that the phase-field model performs very well, at least qualitatively, in both deformation-induced
fracture and hydraulically-induced fracture, though spurious hourglassing modes were observed during coupled
hydralically-induced fracture. Future work would include performing additional quantitative benchmark tests and
updating the model as needed.
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Nomenclature
F = Deformation Gradient
Fe = Elastic part of the deformation gradient
F p = Plastic part of the deformation gradient
bbb = Left Cauchy-Green deformation tensor
σσσ = Cauchy Stress
τττ = Kirchhoff Stress
Ψ = Total Helmholtz Free Energy
Ψ̃ = Approximate Helmholtz Free Energy
W+ = Positive (tensile) strain work
W− = Negative (compressive) strain work
W p = Plastic work
W = Deviatoric work
U = Volumetric energy
H = Maximum elastic energy
Γ0 = Fracture surface
G0

c = Critical fracture energy
Ke f f = Intrinsic Permeability
KF = Fracture Permeability
κ = Bulk modulus
µ = Shear modulus
Γc = Damage functional
l0 = Fracture length scale
βe = Contribution of elastic work to damage
βp = Contribution of plastic work to damage
c = Phase-field variable
g, gp = Damage functions
f = Yield function
k = Hardening function
α = Hardening state variable
γ = Strain-like plastic strain state variable
Φ = Tri-axiality function
Cr = Reaction coefficient
Cd = Diffusion coefficient
Cs = Source term
〈·〉 = Macaulay brackets

1 Introduction
1.1 Motivation

The field specific application of fracture mechanics is an increasingly important topic in fields including geophysics,
materials engineering, structural mechanics and engineering design. Because fracture is a failure mode that occurs on many
scales, both temporally as well as spatially, the ability to enlist the help of parallel computation through finite element
simulations is important in predicting and modeling these scenarios. Quantifiable measures of failure, such as damage to
a material, can be computed and tracked when running such simulations. These quantities are not directly measureable in
experiments, nor are their time-scales reasonable for experimentation, often spanning tens of thousands of years.

Within this paper, a brief overview of the physical processes of interest in fracture are discussed, followed by a summary
of a few methods that are often used to predict fracture. An in-depth review of the phase-field method is discussed in Chapter
2 to familiarize the audience with this model and to highlight the loose two-way coupling of the two processes. Chapter 3
presents the numerical tests and their results. Chapter 4 details an extension of the linear-elastic phase-field model to a model
that incorporates plasticity. An overview of the continuum-mechanics-based formulation of the model prepares the way for
a description of the simulations that have been conducted. A background and discussion of the model’s performance on the
Sandia Fracture Challenge are also discussed in Chapter 4. Final conclusions are presented in Chaper 5.

1.2 Modeling Fracture Within Solids
The importance of understanding damage evolution has led to the development of numerous fracture models, many of

which rely on Griffith’s theory for brittle fracture, which relates crack nucleation and propagation to a critical energy release



rate. Theoretical fracture models depend on a crack developing or propagating when this critical value is reached, leading to
a process zone that transitions from completely undamaged to fully damaged at a single point [1] or over a specified region
[2].

There are various approaches to numerical modeling of fractures within solids. Of these approaches, several are robust in
modeling different fracture scenarios, with reasonable computational expense. The extended finite element method (XFEM)
enriches the finite element solution space with discontinuous fields associated with a crack independent of the mesh [3].
However, this approach does not specify the particular physics of fracture initiation and propagation, and implementations
in 3D are notoriously difficult due to the complexity of the required computational geometry.

Another approach based on the peridynamic theory assumes that particles within a body interact with each other in a
nonlocal sense, within a finite neighborhood. In this model, fracture occurs as forces acting between material points decay
to zero based on a predefined threshold, e.g., a critical stretch. The peridynamic equations of motion at a point involve an
integral functional of the bond forces in a body. It is a continuum theory, which naturally discretizes as a mesh-free particle
method [4]. In this aspect, it is favorable over methods that treat cracks explicitly, because the equations of motion and
the constitutive models naturally drive fracture initiation and propagation. The use of a pairwise force function is not the
traditional method of representing constitutive relations, making the method inconvenient. It is also an oversimplification to
assume that any two particles can be simply related with a single force potential [5].

A Lagrangian finite element model for brittle materials based on cohesive zones (CZM) was developed in the mid 1990s.
This method is used to predict the propagation of discontinuities along the interface between elements based on a cohesive
traction separation law. These models are a departure from brittle fracture, because cracks may develop from the gradual
delamination of the crack surfaces. This process takes place in the cohesive zone, which represents an extended crack tip,
and was originally formulated to avoid the crack tip stress singularity that is present in linear elastic fracture mechanics. A
major advantage of the CZM over linear elastic fracture mechanics is the ability to predict behavior of initially undamaged
material [6]. A disadvantage to such a method is the mesh-dependency of the fracture path [2].

2 Phase-Field Formulation
2.1 Damage, Diffusion, and Deformation

There are three important mechanical properties that are of interest in many subsurface rock mechanics problems:
deformation, diffusion, and damage. In poroelastic media, these properties are all connected by constitutive relations through
the underlying physics. Poroelasticity describes a porous material, with a solid matrix behaving elastically and interstitial
fluids that behave viscously. The solid mechanics in such a medium are described using the constitutive laws of linear
elasticity, and the fluid mechanics are described with Darcy’s law of fluid transport.

The first pair of coupled properties that we will consider within a poroelastic solid is that of damage with deformation.
When a solid is deformed, the effective stress within the solid is changed, so long as the surfaces are restrained to limit rigid
body modes. When a portion of that solid has reached a critical threshold called the critical energy release rate, or G0

c , a
crack will propagate. Conversely when a fracture forms, the elastic strain energy is relaxed, which alters the displacement
field of the solid. This coupled model of damage and deformation is formulated here in terms of a damage variable called
phase-field.

Using Biot’s linear theory of poroelasticity, the processes of fluid flow and fracture within a material can be coupled:
the existence of cracks leads to fluid flowing along these joints known as Poiseuille flow, and conversely, an increased pore
pressure, often due to fluid flow, may lead to initiation and/or further propagation of cracks [7].

It is also important to recognize the coupled mechanisms of fluid transport and displacement within a poroelastic
medium, which has already been well established by Terzaghi and Biot in the 20th century [8]. An example of this coupling
is the increased resistance to deformation of a saturated porous rock as compared to an identical material but subjected to a
drained boundary condition. Biot’s model of poroelasticty readily demonstrates the diffusion and solid displacement.

2.2 Phase-Field Model of Fracture
In order to better deal with some of the aforementioned challenges, a phase-field model of fracture is considered, whose

basic motivation is to smooth out the crack surface discontinuity by using a diffusive scalar field, c. Figure 1 depicts how
a variable, c, approximates a discontinuous function (the crack surface in this case). Since the crack is a natural outcome
of the analysis, it does not require an explicit geometric representation and tracking, which is an advantage over alternative
techniques. This phase-field variable represents damage, and provides a diffuse transition between unbroken and broken
material [9]. This damage variable is only defined in the set [0,1] and will take the value of 0 on the crack surface, while
taking a value of 1 away from the crack.



Fig. 1. A diagram representing a solid body Ω, under traction and displacement boundary conditions, ∂Ω f and ∂Ωu respectively, with crack
surfaces represented as Γ, on the left while the phase-field approximation is represented as c(x, t) on the right. Pore pressure, p, is included
as a driving force.

2.3 Mathematical Formulation of Linear Elastic Model
We will consider the phase-field formulation which is based on a variational statement of brittle fracture. To do this,

we first establish the potential energy of the system. For a linear-elastic, isotropic material, we consider the elastic strain
energy density, ψe(ε), where ε is the infinitesimal strain tensor, and both λ and µ are the Lamé coefficients, as shown below
in equation (1).

ψe (ε) =
1
2

λεiiε j j +µεi jεi j (1)

In equation (2), the total potential energy, Ψ(ε,Γ), is considered, which is the sum of the elastic strain energy and
fracture energy. Γ(t) represents a set of crack surfaces that exists within the body at some time t, while Ω is an arbitrary
bounded domain [10]. See Figure 1 for a visual representation of the arbitrary, bounded domain. The fracture energy is
calculated by integrating Gc, the critical fracture energy, over the entire crack surface Γ [10].

Ψ(ε,Γ) =
∫

Ω

dΩ+
∫

Γ

GcdΓ (2)

It is convenient to introduce a scalar variable, which we will call the phase-field variable c, to develop a regularized
formulation of the total potential energy above. We approximate the fracture energy as a volume integral, rather than a
surface integral, and can approximate the fracture energy with an integral of crack density function, Γl , which is the integrand
in (3) below [11].

Γl0(c) =
∫

Ω

1
4l0

[(c−1)2 +4l0|∇c|2]dΩ (3)

A user-chosen length-scale variable, l0, is introduced which will drive the width over which a fracture is modeled going
from c = 0 to c = 1. It is important to note the aforementioned convention being used for damage, c, in this work. In other



Fig. 2. Phase-field approximation of a crack in 1-D. The damage parameter, c, portrays a fully damaged material at a value of zero, and is
spatially smooth moving away from the crack. The length scale, l0, defines the width over which the crack is smeared

literature, [11] the reverse convention is used. Figure 2.2 depicts how this scalar variable is distributed around a crack with
a given length scale. [1] show that equation (3) can be minimized, when the following Euler-Lagrange equation holds true
[10]:

c−1−4l2
0∆c = 0 (4)

In the case of one dimension, the solution of the differential equation (4) leads to the minimization in a single dimension,
x:

c(x) = 1− e−|x|/2l0 (5)

which is depicted in Figure 2.
The approximation of equation (2) is finalized by considering the form of the elastic strain energy density function,

ψ̃(ε,Γ). Using Miehe et al. [11] as a template, we decompose ψe into the tensile and compressive energy contributions,
shown as ψ+

e (ε) and ψ−e (ε) respectively, and assume that the elastic strain becomes:

ψ̃(ε,c) = c2
ψ
+
e (ε)+ψ

−
e (ε) (6)

This decomposition effectively removes any crack growth due to compressions, which is considered to be a reasonable
assumption for fractures, leaving hydrostatic tension and shear as the sole sources of damage. Finally, we can consider our
total potential energy approximation, Ψ̃:

Ψ̃(ε,c) =
∫

Ω

[
c2ψ+

e (ε)+ψ−e (ε)+
1

4l0
Gc[(1− c)2 +4l0|∇c|2]

]
dΩ (7)

In order to impose the irreversible nature of crack growth into our model, a strain-history field, H , is introduced which
satisfies the Kuhn-Tucker conditions for loading and unloading and will replace the tensile contribution of strain energy, ψ+

e ,
when solving for the damage variable. This replacement addresses the idea that c is a monotonically decreasing parameter,
and a damaged material will not heal under compressive stresses. This is expressed in equation (8):



∂c
∂t
≥ 0 (8)

Now let us consider the kinetic energy of this arbitrary body:

Ψkin(u̇) =
1
2

∫
Ω

ρu̇iu̇idΩ, (9)

where u̇ = ∂u
∂t is the velocity of the body, and ρ is its mass-density. Now that we have formulated the potential and kinetic

energies of the body, we are able to form the Lagrangian of the fracture problem from (7) and (9):

L(u̇,u,Γ) = Ψkin−Ψpot =
1
2

∫
Ω

ρu̇iu̇idΩ−
∫

Ω

[
c2H (ε)+ψ−e (ε)+

1
4l0

Gc[(1− c)2 +4l0|∇c|2]
]

dΩ (10)

Using the Euler-Lagrange equations, we write the governing partial differential equations that describe the problem at
hand, whose solutions are minimizers of the energy functional above:

(
4l0cH

Gc
+1
)

c−4l2
0

∂2c
∂x2

i
= 1 (11)

∂σi j

∂x j
= ρüi (12)

where ü represents the second derivative of position with respect to time, i.e. the acceleration. As a broad review of the
derivation, (11) and (12) fall out of the Lagrangian energy functional after applying Euler-Lagrange equations [10]. Note
that (12) is simply a statement of the conservation of momentum from the classical continuum theory. These equations,
which are the strong form equations of motion, can be solved in unison to find the displacement field and phase-field given
the following boundary and initial conditions:

(BC)


ui = gi

σi jn j = ti
∂c
∂xi

ni = 0
(13)

(IC)


u(xxx,0) = uuu0(xxx)
u̇(xxx,0) = vvv0(xxx)
c(xxx,0) = c0(xxx)

(14)

2.4 Two-Way Coupling
Rather than considering a bulk approach to the coupling of fluids and solids in poroelastic media, we will consider

the two phases separately during each time-step and update these properties with a loose coupling. By implementing the
constitutive relations independently of one another, we are able to model the effective stress and stress contribution of the
fluid pressure. We do this to take the individual contributions of its solid and fluid constituents into account, preventing the
need to lump the states’ parameters into one model and lose sensitivity to a change in a material’s porosity or fluid content.
Because we are considering a two-way coupling between fluid flow and damage, a formulation of how each field is updated
is required. Let us first consider how the phase-field variable is modified by the onset of fluid flow with a medium. By solving
the Lagrangian system formulated earlier, we are able to compute the damage field within the medium, given a particular



state of stress. When considering a porous, fluid-saturated material, equation (15), is needed to incorporate the hydrostatic
pressure of the fluid filling the pore-spaces.

σ = c2 ˜σe f f −bp, (15)

where σ is the total stress, and ˜σe f f is the effective stress in the solid skeleton, b is Biot’s coefficient, and p is the fluid pore
pressure. Including the hydrostatic pressure allows for the flow to directly affect the stress and consequently the damage. We
will also allow the permeability to be increased with higher levels of damage completing the coupling.

A joint opening vector is computed as a field variable over the elements in the model using the spatial gradient of the
phase-field variable. This state variable will allow the computation of Poiseuille-type flow through cracks and couple the
flow to the solid mechanics portion of the simulation. The joint opening state variables can be summarized by the equations
below, in which λ⊥ represents the stretch perpendicular while ∇c represents the gradient of damage, and CCC−1 is the inverse
of the Right-Cauchy Green tensor in (16).

λ
2
⊥ =

∇c ·∇c
∇c ·CCC−1 ·∇c

(16)

ω
2 =

{
(λ⊥−1)2L2

⊥ c < c0

0 otherwise
(17)

δn = ωnnn (18)

The crack opening width, represented by ω, is formed from a product of the element length in the neighborhood of the crack,
L⊥, and an adjusted stretch vector. As (17) indicates, this value is zero unless the damage is greater than some user-chosen
threshold value, c0. Ultimately, the joint opening vector δn, the state variable of interest, is formed by scaling the unit vector
normal on the deformed crack surface, nnn, by the crack opening as shown in (17). These equations have been modified
from [12].

In addition to the Darcy flow within the porous material, we need to also consider the additional fluid mass flux through
a fracture, which is achieved by altering the effective permeability of the cracked media. This Poiseuille flow has a a
quadratic dependence on ω as shown in (19), where η̄ is the dynamic viscosity of the fluid, and α is a coefficient based on
the distribution of the fractures in the media.

KF = α
1

12η̄
ω

2 (19)

Now we can write:

Ke f f = KmIII +KF(I−nnnnnn), (20)

where Km is the permeability of the matrix, and Ke f f is the modeled intrinsic permeability [13]. Other approaches exist that
make use of the joint opening including [12], in which a continuum mechanics approach is taken, as shown in (21).

K̂KK f racture = Kcω
2J[CCC−1− (CCC−1nnn0)⊗ (CCC−1nnn0) (21)

In this configuration, Kc is similar to KF in (19), with nnn0 being the deformation of a line element perpendicular to the
material crack surface. From their formulation it follows that

K̂(FFF ,d) = Km( fff )+dε0K̂KK f racture(((FFF), (22)

where ε0 is a material parameter. For the numerical investigations describes in this paper, the approach described in equation
(20) was used.



3 Coupled Flow-Fracture Results
3.1 Overview of Numerical Methods

The numerical models in these studies make use of Sierra Mechanics, Shaw et al., 2015, developed at Sandia National
Laboratories, which is an engineering mechanics simulation framework that has been developed to study computational
mechanics using MPI parallel finite element discretization. A variety of rock mechanics problems can be addressed with this
suite of codes, and of particular interest to this work is the solid mechanics module called Adagio, and the fluid mechanics
module called Aria. Within Sierra’s material library, LAMÉ, a C++ material class called “Phase-field Porous Flow” was
created to run simulations for fracture and flow problems, based on a phase-field approach to handle the crack propagation
as described above. This material model modifies the standard phase-field model in two critical ways: 1) the total stress is
augmented by the hydrostatic term, and 2) the joint opening vector is computed from the phase and which will be used to
update a material’s permeability. The following sub-sections detail these processes.

Because we would like to solve for displacements and fluid pressures using seperate modules, Sierra has a tool called
Arpeggio that handles the transfer of these fields from one solver to another. After initalizing the solid and fluid parameters,
a transfer protocol is setup within the input deck, which tells Aria to send the pore pressures to Adagio, which in turn uses
the inital pore pressures to update the displacements and phase-field variables in the solid model. After this update occurs,
the joint opening variables are passed into a user subroutine, which carries out the operation in equation (20), updating Ke f f .
The newly updated permeability is then passed on to Aria, which computes the flow with this newly updated permeability
information. The linear elastic phase-field, along with the displacement field, are solved using an explicit time-staggered
integration, utilizing an implicit solver for the parameter c [14].

3.2 Fluid Injection
To test this model, we consider a thin, rectangular domain made of Hex-8 solid elements. The initial time step was

chosen to be 0.1 s, although the timestep was allowed to be adaptive in order to converge with larger load-steps. The material
parameters were akin to those of an average limestone with E = 10 GPa, ρ = 2250 kg

m3 , ν = 0.155, l0 = 0.25 m, G0
c = 98. The

phase-field was initialized to 1 across the entire mesh, and pressures were equally set to zero. A flux boundary condition was
imposed upon a single element in the bottom left portion of the mesh, whcih will call the injection zone. A mass flux rate of
5 kg

s2m2 was imposed, starting with a mass flux of zero at t = 0, was the source of damage.
In the first simulation, displacements in both x and y were fixed along both the bottom and left boundaries. This set of

boundary conditions prevented displacement, or fluid flow below x = 0 and y = 0 and in a sense caused a corner condition.
We set the fixed displacement conditions as such in order to produce a fracture in a quasi-static loading scenario: without
such boundaries, we would observe a symmetric expansion of the injection area, leading to a completely damaged area that
grew radially, rather than a fracture. As the fluid pressure builds in the injection area, the critical stress is reached after a
few timesteps, and the phase-field variable begins to decrease. As the permeability increases in the damaged areas, portions
of the mesh near the corners begin to accumulate higher fluid pressure than those areas not near the boundaries, resulting in
two fractures that form and propagate parallel to the fixed boundaries.

As seen below in Figure 3, this demonstrates, qualitatively, that the two-way coupling behaves in a way that seems
reasonable. The top left quadrant of the figure shows the phase-field solution at time t = 8s, as the fracture has propagated
to near the boundary. The top right quadrant shows the computed joint opening magnitudes at the same time, while the
bottom left quadrant shows the pore pressures that have spread along the newly formed joint. The final quadrant shows
the xx component of intrinsic permeability, which is increased along the fracture. While nearly symmetric, it can be easily
observed that this solution is not entirely symmetric. We suspect that this is due to the reduced integration scheme used
during the solution scheme.

In a second numerical test, we used the same parameters as described above, but altered the boundary conditions to
that of quarter-symmetry. This is achieved by only fixing displacements in the x direction on the left side of the mesh and
in the y direction on the bottom side. As additional fluid mass is injected into the injection area, flow and displacements
occur parallel to the boundaries, both in the +x and +y directions. We can see in Figure that this is the direction of fracture
propagation. This also demonstrates a qualitatively sound solution.



Fig. 3. Variables of interest at time t = 8 during the second fluid injection test. From top left clockwise: Phase-field, Joint Opening Magnitude
(m), xy component of Effective Permeability Tensor (H/m)

, and Pore Pressure (Pa)



Fig. 4. Variables of interest at time t = 8 during the second fluid injection test. From top left clockwise: Phase-field, Joint Opening Magnitude
(m), xy component of Effective Permeability Tensor (H/m)

, and Pore Pressure (Pa)



3.3 Hourglass Effects
As previously mentioned, the solutions we encountered were not always symmetric, even when setting up the test with

perfect symmetry. Upon closer inspection, it appears that this was due to the use of reduced integration, resulting in spurious
hourglass modes. We further suspect that use of incompressible fluids to drive the loading is the reason why the reduced
integration is an issue. Figure 5 shows the phase-field solution after several time steps of a fluid volume being injected into
a slot. The asymmetries along the corners of the solution, and at edges of the injection zone are obvious. As the simulation
continues to run, the onset of a chaotic solution becomes evident, as shown in Figure 6. Because of these spurious modes,
we had to avoid certain geometries and loading scenarios for our numerical tests. When comparing this to a similar test
of pore-pressure injection in Adagio, using fully integrated elements, such unpleasantries were avoided. Running Arpeggio
with fully integrated elements was not within the scope of this project, due to limited time once the issue was discovered.
This just goes to show that sometimes it just isn’t worth being rank-deficient.

Fig. 5. Upclose view of injection zone as hourglassing effects become evident

Fig. 6. Results of injection test after onset of hourglass effects

4 Sandia Fracture Challenge
4.1 Background on Sandia Fracture Challenge

In 2010, Sandia National Lab proposed the first Fracture Challenge. The purpose of the challenge was to determine
the extent to which members of the fracture mechanics community could accurately model fracture in a relatively simple
test scenario. Several samples of a test coupon were created and loaded in tension to failure. The challenge was done in
a double-blind fashion; the participants in the challenge had no a priori knowledge of the experimental outcomes, while



the experimenters had no knowledge of the modeling methods and results used by the participants. Comparisons of results
were made at the end of the challenge period. Model accuracy was determined by comparing crack path, crack opening
displacement (COD), and the forces at which the crack developed and propagated to experimental results [15].

The geometry of the test coupon is shown in Figure 7. The geometry was intended to be relatively simple, yet not
analytically solvable. Participants were provided with all geometry and specified manufacturing tolerances.

Fig. 7. Geometry of test coupon used in Fracture Challenge. Dimensions are in millimeters.

Sandia also provided participants with detailed material specifications, including alloy composition, heat treatment data,
and surface micrographs. The material used was 15-5 PH, a martenistic hardened stainless steel. Four tensile coupons, shown
in Figure 8, were taken from the same sheet of material as the fracture challenge coupons and tested to failure. Stress-strain
curves (Figure 9) from these tests were provided to participants as well [15].

Fig. 8. Geometry of the tensile test coupon



Fig. 9. Results of tensile test obtained by Sandia

4.2 Incorporating Plasticity into the Phase-Field Material Class
The previously described phase-field constitutive model has been shown to be effective in representing the deformation

of geo-materials which, in general, display brittle fracture [16]. Briefly, materials which do not display significant amounts
of plastic deformation prior to fracture are considered brittle, while those that fracture after the onset of significant amounts
of plasticity are considered ductile, such as some metals. Interestingly, metals will exhibit ductile fracture combined with
brittle fracture depending both on the material and the load case [17]. From the provided load-displacement curves, it was
observed that significant plasticity occurred in the material prior to fracture. For this reason, an equation for ductile materials
was sought.

4.3 Phase Field Plasticity Model
The phase field plasticity model implemented was taken from the paper by Borden et. al. [18]. In this paper a J2 flow

plasticity model was developed which accounts both for stress tri-axiality as well as the ability for plasticity to continue
accruing as damage increases. A brief discussion of the derivation of the fracture model is presented here.

The deformation gradient FFF is broken down into a plastic portion FFF p and an elastic portion FFFe as

FFF = FFFeFFF p

The total stored energy can be written as

Ψ
(
FFF ,Γ0)= ∫

Ω0

W (FFF)dΩ0 +
∫

Γ0
G0

c dΓ
0

The phase-field approximation takes the form

Ψ̃(FFF ,c,∇c) =
∫

Ω

g(c)W (FFF)dV +
∫

Γ0
G0

c Γ
c (c,∇c)dΓ

0

where

Γ
c (c,∇c) =

1
4l0

(
(c−1)2 +4l0∇c ·∇c

)



Similarly to the pore pressure approach, cracks are assumed to not effect the energy of hydrostatic compression so the
energy is separated into a positive and negative hydrostatic stress. Additionally, the energy dissipation due to plastic work is
included. This leads to the total energy being written as

Ψ̃(FFF ,c,∇c) =
∫

Ω

[
g(c)W+(FFF)+W− (FFF)+gp(c)W p (α)

]
dV +

∫
Γ0

G0
c Γ

c (c,∇c)dΓ
0

where gp(c) is the damage function for plasticity taken here to be identical to g(c) and α is the state variable which
tracks the evolution of plastic strain. Instead of the quadratic form of g(c) used in the pore fluid pressure phase field model,
this new approach utilizes a cubic representation of

g(c) = s
(
c3− c2)+3c2−2c3

where s is a parameter which determines the slope of g at c = 1 and is typically set to 10e−4. Neglecting the derivation
of the governing equations (see Borden [18]) we arrive at the following expression for the phase field model

2l0
G0

c

(
βeg′(c)H +βpg′p(c)〈Wp−W0〉

)
+ c−4l2

0∇c ·∇c = 1

This expression will be solved using Sierra’s reaction-diffusion equation solver with

Cr =
2l0
cG0

c

(
βeg′(c)H +βpg′p(c)〈Wp−W0〉

)
+1

Cd = 4l2
0

Cs = 1

where Cr is the reaction coefficient, Cd is the diffusion coefficient, and Cs is the source term. The plastic response is a
typical J2 flow model with a yield function defined as

f = ||sss||−gp(c)

√
2
3

k(α)

where sss is the deviatoric part of the Kirchhoff stress i.e. (τττ = Jσσσ where σσσ is the Cauchy stress). The flow rule is assumed
to be associative leading to

nnn =
sss
||sss||

The plastic power is typically defined as

Ẇ p = γ̇||sss||

but in order to include tri-axiality effects from the stress it is defined as

Ẇ p = γ̇
||sss||

φ



where

φ = d1 +d2e
d3trace(τττ)

3||sss||

and d1, d2, and d3 are parameters.
The plasticity model is evaluated in the following steps

1. The state variables are extracted (α, bbb
e
n)

2. The change in the deformation gradient is assumed to be all elastic and bbb
e
n+1 = ∆FFFbbb

e
n (∆FFF)T

3. The deviatoric trial stress is calculated sss = g(c)µdev
[
bbb

e
n+1

]
4. The yield condition is evaluated f = ||sss||−gp(c)

√
2
3 k(α)

5. If f <= 0 then let δγ = 0 and go to (6)

(a) Define Itr
be = 1

3 trace
[
bbb

e
n+1

]
, µ = g(c)µItr

be

(b) Solve for δγ using a Newton-Raphson iteration: ||sss||−gp(c)
√

2
3 k
(

α+
√

2
3 ∆γ

)
−2µ∆γ = 0

(c) Update sss = sss−2µ∆γnnn, α = α+
√

2
3

6. Update the Kirchhoff stress J = det [FFF ]
U ′(J) = κ

2J

(
J2−1

)
p =

{
g(c)U ′(J) ifJ > 1
U ′(J) otherwise

7. Update bbb
e
n+1

bbb
e
n+1 =

sss
g(c)µ + Ibe III

Note that Ibe 6= Itr
be and must be solved for using a Newton iteration to ensure det

(
bbb

e
n+1

)
= 1.

8. Compute W+ and update H

W p =W p +∆γ
||sss||

φ

U+ =

{
1
2 κ
( 1

2

(
J2−1

)
− log(J)

)
if J > 1

0 otherwise

bbbe = J
2
3 bbb

e
n+1

CCCp = FFF−1bbbeFFF−T

W =
1
2

µ
(

1

J
2
3

(
FFFT FFF

)
: (CCCp)−1−3

)
(note :)AAA : BBB = Ai jBi j

W+ =W +U+

H = max
(
H,W+

)

9. Update reaction diffusion coefficients

l f actor =
1
l3
0

Cr =

{
2l0
G0

c

(
βeg′(c)H +βpg′p(c)〈Wp−W0〉

)
+ c
}

l f actor

Cd = 4l2
0 l f actor

Cs = 1l f actor



4.4 Model Testing
Once the J2 Flow model was implemented within Sierra, the group performed benchmark testing. The group attempted

to replicate the tensile test performed by Sandia, to tune the material properties as well as model parameters such as W0. The
mesh used is shown in Figure 10. This mesh was fixed on the −x end, and a displacement was applied on the +x end at a
rate of 1× 10−3 m/s. Note that both the tensile test simulation and the Fracture Challenge simulation employed adaptive
time-stepping, to aid convergence of the reaction-diffusion solver.

Fig. 10. Mesh of tensile test coupon

The results qualitatively behave as expected for a tensile test specimen. The damage, represented by the phase-field,
accurately indicates the region where necking begins. Both plastic strain and plastic work also demonstrate this. These
results are shown in Figures 11, 12, and 13, respectively.

Fig. 11. Phase-Field progression during tensile test



Fig. 12. Plastic strain progression during tensile test

Fig. 13. Plastic work progression during tensile test

4.5 Results and Discussion
The Sandia Fracture Challenge was performed after minor calibration of model parameters. Post-processing capabilities

were not sufficient to perform real quantitative comparisons for either the tensile test or the Fracture Challenge. Namely,
Paraview does not provide an obvious manner to generate a load displacement curve from which the parameters could be
tuned to reproduce the tensile specimen response. Qualitatively, however, the results, shown in Figures 14 and 15 appeared
to match well with the experimental results obtained in [15]. The crack path developed in the specimen closely follows the
crack path A-C-E (referring to letters in Figure 7) that was apparently due to out-of-tolerance manufacturing. These results
were determined to be reasonably successful for a project of this scope.



Fig. 14. Phase-field results from the Sandia Fracture Challenge indicate onset of failure where expected

Fig. 15. Damage progression over time



5 Further Discussion and Conclusions
Phase-field fracture techniques have demonstrated their versatility in that they are able to capture the expected modes of

fracture for two very dissimilar materials (limestone and stainless steel). The ability to propagate a crack through a material
without either needing to specify the initial failure point or accurately track the fracture surface, as well as the generality of
the elastic and plastic material response provide compelling reasons why the method should be considered for application to
a wide array of problems.

Future work with the coupled model will involve implementing fully integrated solid elements to prevent unwanted spu-
rious solutions. To do this, all 72 variables due to the eight independent quadrature points from each of the nine components
of the permeability tensor must be modified at the onset of Poisuille flow. Another means to avoid the hour-glassing phe-
nomena caused by reduced integration is to update the permeability with a continuum approach as outlined in equation (22).
By taking this approach, much of the work would be done within the “Phase-Field Porous Flow” material model, avoiding
the need to depend on a user subroutine during each time step. Additional validation and verification of the model needs to
occur using benchmarks and quantitative comparisons to similar models.

Future work for the elasto-plastic phase-field model would be calibration of the model to the tensile specimens and
then further simulation of the Fracture Challenge geometry. Additionally, it would be of interest to perform a mesh conver-
gence/dependence study to see if the fracture path will be unaffected by changes in the mesh. Further still, it would be useful
to perform a parameter study to detect the sensitivity of the crack location and load-displacement response to variations in
the material parameters. Due to the potential for element entanglement a mesh deletion/failure strategy could also be useful.
This might allow the model to run in a more efficient manner.



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engi-
neering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA0003525.
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